4. Median of Two Sorted Arrays
Problem
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
Related Topics:
Array
Binary Search
Divide and Conquer
Analysis
中位数:将一个集合分成等长的两部分,其中一部分总是小于另一部分。
我们可以将 A
,B
两个数组进行划分:
left_part | right_part
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
如果我们确保:
1) len(left_part) == len(right_part)
2) max(left_part) <= min(right_part)
等价于
(1) i + j == m - i + n - j (or: m - i + n - j + 1)
if n >= m, we just need to set: i = 0 ~ m, j = (m + n + 1)/2 - i
(2) B[j-1] <= A[i] and A[i-1] <= B[j]
n >= m,为了确保 j 非负
则可得到结果:
median = (max(left_part) + min(right_part))/2
等价于
max(A[i-1], B[j-1]) (when m + n is odd)
or (max(A[i-1], B[j-1]) + min(A[i], B[j]))/2 (when m + n is even)
所以我们需要做的是:
Searching i in [0, m], to find an object `i` that:
B[j-1] <= A[i] and A[i-1] <= B[j], ( where j = (m + n + 1)/2 - i )
通过二分查找,确定 i
:
<1> Set imin = 0, imax = m, then start searching in [imin, imax]
<2> Set i = (imin + imax)/2, j = (m + n + 1)/2 - i
<3> Now we have len(left_part)==len(right_part). And there are only 3 situations
that we may encounter:
<a> B[j-1] <= A[i] and A[i-1] <= B[j]
Means we have found the object `i`, so stop searching.
<b> B[j-1] > A[i]
Means A[i] is too small. We must `ajust` i to get `B[j-1] <= A[i]`.
Can we `increase` i?
Yes. Because when i is increased, j will be decreased.
So B[j-1] is decreased and A[i] is increased, and `B[j-1] <= A[i]` may
be satisfied.
Can we `decrease` i?
`No!` Because when i is decreased, j will be increased.
So B[j-1] is increased and A[i] is decreased, and B[j-1] <= A[i] will
be never satisfied.
So we must `increase` i. That is, we must ajust the searching range to
[i+1, imax]. So, set imin = i+1, and goto <2>.
<c> A[i-1] > B[j]
Means A[i-1] is too big. And we must `decrease` i to get `A[i-1]<=B[j]`.
That is, we must ajust the searching range to [imin, i-1].
So, set imax = i-1, and goto <2>.
加上边界值:
<a> (j == 0 or i == m or B[j-1] <= A[i]) and
(i == 0 or j = n or A[i-1] <= B[j])
Means i is perfect, we can stop searching.
<b> i < m and B[j - 1] > A[i]
Means i is too small, we must increase it.
<c> i > 0 and A[i - 1] > B[j]
Means i is too big, we must decrease it.
<b>
和 <c>
不需要判断 j
,因为 i < m ==> j > 0
和 i > 0 ==> j < n
:
m <= n, i < m ==> j = (m+n+1)/2 - i > (m+n+1)/2 - m >= (2*m+1)/2 - m >= 0
m <= n, i > 0 ==> j = (m+n+1)/2 - i < (m+n+1)/2 <= (2*n+1)/2 <= n
Code
class Solution {
fun findMedianSortedArrays(nums1: IntArray, nums2: IntArray): Double {
val m: Int
val n: Int
val a: IntArray
val b: IntArray
if (nums1.size <= nums2.size) {
a = nums1
b = nums2
} else {
a = nums2
b = nums1
}
m = a.size
n = b.size
var i: Int
var j: Int
val halfLen = (m + n + 1) / 2
var minI = 0
var maxI = m
while (minI <= maxI) {
i = (minI + maxI) / 2
j = halfLen - i
when {
i < m && b[j - 1] > a[i] -> minI = i + 1
i > 0 && a[i - 1] > b[j] -> maxI = i - 1
else -> {
val maxLeft: Int = when {
i == 0 -> b[j - 1]
j == 0 -> a[i - 1]
else -> maxOf(a[i - 1], b[j - 1])
}
if ((m + n) % 2 == 1) {
return maxLeft * 1.0
}
val minRight: Int = when {
i == m -> b[j]
j == n -> a[i]
else -> minOf(a[i], b[j])
}
return (maxLeft + minRight) / 2.0
}
}
}
throw Exception("ValueError")
}
}
Last updated